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ABSTRACT

A smooth nonparametric estimate of the quantile function from right- 5i:f
censored data is given by Qn(p) = h_lfé 6n(t)K((t—p)/h)dt, 0 < p <1, where
K is a kernel function, h is the "bandwidth,” and 6n is the product-limit
quantile function. This report describes a computation procedure for data-
based selection of a "best" bandwidth value to use in computing Qn(p) and
for obtaining estimates of the bias and standard error as well as a nonpara-
metric confidence interval for the true quantile value. The procedure is based
on the bootstrap method for right-censored data. A iisting of a FORTRAN

program which performs the necessary calculations is provided, and examples

of the procedure are given.

Key Words: Nonparametric quantile estimation; Right-censoring; Percentile

interval; Bootstrap; Bandwidth selection.
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1. INTRODUCTION

Right-censored data arise very naturally in life testing and reliability
studies. For such data, it is important to be able to obtain good nonpara-
metric estimates of various characteristics of the unknown lifetime distribu-
tion. This report concerns the computational procedure for a kernel-type
nonparametric estimator of the quantile function of the lifetime distribution
from right-censored data. This estimator was suggested by Padgett (1986),
extending the complete sample results of Yang (1985). The large sample
properties of the estimator, such as asymptotic normality and mean square
convergence, were studied by Lio, Padgett and Yu (1986) and by Lio and Padgett
(1985).

In this report, a procedure for calculation of the kernel-type quantile
estimate from right-censored data is described, and a listing of a computer
program in FORTRAN code is provided. 1In the procedure, the bootstrap is used
to determine the approximate "optimal" bandwidth values to use for the kernel
quantile estimates ("optimal" in the sense of smallest estimated mean squared
error). The bootstrap method also provides estimates of the bias, mean squared
error,and standard deviation of the estimator. In addition, a bootstrap confi-
dence interval for the gquantile, that is, a percentile interval, is obtained
(see Efron, 1982, or Efron and Tibshirani, 1986, p. 68). See Padgett and
Thombs (1986) for details on the performance of this computational procedure.

In section 2, the estimator is given. The computation procedure using
the bootstrap method is described in section 3. Section 4 contains the listing

of the FORTRAN source code and several examples on the utilization of the

computer program.
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;: 2. THE NONPARAMETRIC QUANTILE ESTIMATOR

. Let xf,...,xg denote the true survival times of n items or individuals
: that are censored on the right by a sequence Ul""’Un’ which in general may

A be either constants or random variables. The X?'s are nonnegative, indepen-
. dent, identically distributed random variables with common unknown distribution
'w

-1
Fo (p) =

- function Fo and unknown quantile function Qo(p)

-
>
r_:

inf(t: F (t) 2 p}, 0 <p < L.
The observed right-censored data are denoted by the pairs (Xi,Ai),
i=1,...,n, where
1 if X <u;
X; = min{X?,Ui}, A, =

0 if x° > u..
1l 1

Thus, it is known which observations are times of failure or death and which
ones are censored or loss times. The nature of the censoring depends on the
Ui's. (i) 1f Ul""'Un are fixed constants, the observations are time-
truncated. If all Ui’s are equal to the same constant, then the case of

Type I censoring results. (ii) If all u; = X?[), the rth order statistic

of x° ,Xg, then the situation is that of Type II censoring. (iii) If

177"
Upre--0Up constitute a random sample from a distribution H (usually unknown)

and are independent of x°,...,x§, then (xi,Ai), i=1,2,...,n, 1is called a l

randomly right-censored sample. The observed value of (Xi,Ai) is denoted by

(xi,si). ‘

A popular estimator of the survival function l—FO(t) from the censored

:',,—-"."'*'"v., A S e S o aaC
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sample (Xi,Ai), i=1,...,n, 1is the product-limit estimator of Kaplan and Meier
(1958). The product-limit estimator, which was shown to be "self-consistent"

by Efron (1967), is defined as follows. Let (Zi'Ai)’ i=1,...,n, denote the
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ordered Xi's along with their corresponding Ai's. Then the product-limit

estimator of l—Fo(t) is

1, 0<t<z

- l'
- k-1 . A,
n-1 1
Pn(t) = j:]_ (n_'—m) ' Zk 1 < t < Zk' k=2,...,n
0, z < t.

The product-limit estimator of Fo(t) is denoted by gn(t) = l-;n(t), and
the size of the jump of §n (or ;n) at Zj is denoted by sj. Note that
sj = 0 if and only if Zj is censored for j < n, i.e. if and only if

Aj = (0, Define si = jzl sj = ;n(zi+1)' i=1,...,n—1( and Sn =1,

A natural estimator of Qo(p) is the product-limit (PL) quantile
function Q (p) = inf{t: F_(t) > p} (see Sander, 1975, or Cheng, 1984, for
example). Since én is a step function with jumps at the uncensored
observations, it is desirable to obtain a smooth estimator of Qo. One such
estimator is the kernel estimator defined as follows (see Padgett, 1986):
Let (h = hn} be a "bandwidth" sequence of positive numbers so that hn -0
as n 2 «, and let K be a bounded probability density function which is zero

outside a finite interval and which is symmetric about zero. Then the kernel

quantile function estimator is given by

-1 172 '
Q.(P) = h™" [5 Q (£)K((t-p)/h)dt

n S,
£ z, [0 K((t-p)/h)dt, 0 <p <1, (2.1)
i=1 i-1

= h‘l

where S0 = 0. Here, the kernel function K is taken to be the triangular

kernel on [-1,1], 1i.e.
l—IXI, -1 stll
K(x) =

0, otherwise.
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This function satisfies all conditions assumed by Padgett (1986), Lio,
Padgett and Yu (1986), and Lio and Padgett (1985).

Procedures for choosing an "optimal" value of the bandwidth to use in
calculating Qn(p) from a given right-censored data set and for estimating
the standard error and obtaining an approximate confidence interval are de-
scribed in the next section. These computations are based on the bootstrap
for right-censored data, and a FORTRAN program for performing them is listed

in section 4.
3. COMPUTATION PROCEDURES

The effective performance of the kernel estimator critically depends on
the choice of the value of the bandwidth h, which is a "smoothing parameter."
If h is too small, not enough smoothing is done, and the estimate will be
"rough,” showing features which do not represent the true quantile function.

If too much smoothing is done, i.e. h 1is too large, important features of the
true function may not be evident. Therefore, for a given set of right-censored
data, a method of selecting a reasonable value of h to use in calculating
Qn(p) at each desired p is needed. Ideally, the value of h (which will
depend on p 1in general) that minimizes the mean squared error of Qn(p) (or
some other criterion) should be used in computing Qn(p). However, that value
of h is not known and a method of estimating it from the censored data is
required. Here, the bootstrap method of estimating the mean squared error of
Qn(p) as a function of h is employed. Then the value, ﬁ(p), which
minimizes the bootstrap estimated mean squared error is selected as the
"optimal"™ bandwidth for calculating Qn(p). The estimate of the mean squared

error as a function of h 1is obtained from 300 bootstrap samples taken from

the given right-censored data set (xi,éi), i=1,...,n. This "data-based"




method of choosing the bandwidth value was mentioned by Padgett (1986) and was
further investigated by Padgett and Thombs (1986). _

The estimate of Qo(p) given by Qn(p) in equation (2.1) is calculated
using the estimated bandwidth value, ﬂ(p), obtained from the procedure above.
To estimate the bias, standard error, and a nonparametric confidence interval
{i.e., a percentile interval), 1000 bootstrap samples are generated from the
given right-censored data. For the jth bootstrap sample, an estimate ng(p)
is obtained from formula (2.1), j=1,2,...,1000. The bias of Qn(p) is then
estimated by

1 1000 b -
BIAS = 1505 l ji:l an(p) - Qn(p)] '

and the standard error of Qn(p) is estimated from

1000 21 Vi
(= o)
1000 L n
SE={ gz | I (QP.(p)? - At
999 nj'P 1000

3=1

Also, an estimate of the mean squared error of Qn(p) is obtained from

MSE = SE:2 + BIASZ. To calculate a nonparametric confidence interval for

Qo(p), the central 95-percentile interval is obtained by selecting the 25th

2f value of the ordered bootstrap estimates ng(p) as the lower bound and the
{; 975th value in this ordering as the upper bound (see Efron, 1982, or Efron and
;3 Tibshirani, 1986, for a complete discussion of this type of interval).

:-f 4. THE COMPUTER PROGRAM AND EXAMPLES

A source code listing of the FORTRAN program which performs the computa-
tions described in section 3 is given in Table 1. That is, this program,

chooses, based on the minimum bootstrap mean squared error criterion, the

L e 'V lv Y.Y M

bandwidth value to use for calculation of Qn(p), calculates Qn(p), calcu-
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lates the bootstrap estimates of the bias, mean squared error, and standard

error, and gives the approximate 95-percentile interval for the true quantile.
The IMSL (1982) subroutine GGUBS for generating uniform random numbers between
zero and one is called by the FORTRAN program and must be available for use.

Table 2 gives an example of input data for the program in Table 1. The
first line is the number of observations, n = 15. Lines 2-16 give the
observed (xi,si) pairs, separated by spaces, line 17 gives the number k of
quantile values to be estimated (1 < k £ 10}, and line 18 gives the k=4
values of 100p, separated by one or more spaces, at which Qn(p) is to be
computed (p = .05, .10, .25, and .50 in this example}. Table 3 shows the
output for the data in Table 2. This output requires approximately one minute
CPU time on a DEC VAX 785 computer. Tables 4 and 5 show the input and output
for the mechanical switch data of Nair (1984), which has n=40 observations
with 23 of them censored. Quantiles for p=.05 and p=.25 are calculated.
These computations require about 3 minutes CPU time on a VAX 785.

Padgett and Thombs (1986) discuss the performance of this procedure of
estimating quantiles from right-censored data. This nonparametric procedure

seems to perform quite well, even for relatively small samples of size n=20

or so.




Table 1. FORTRAN Program Listing for Quantile Estimation

0

@}

ESTIMATION OF QUANTILE USING KERNEL ESTIMATOR FROM RIGHT-
CENSORED DATA
WITH BOOTSTRAP EST. OF BIAS, VARIANCE, AND OPTIMAL BANDWIDTH
KERNEL - TRIANGULAR ON (-1,1)
IMPLICIT REAL*8(A-H,0-2)
DIMENSION Z(300),IDEL(300),x(300),s(300),PF(300),25(300),
1 1I1DS(300),w(300),P(10),ONPP(1000)
REAL*4 W
REAL*8 ISEED
ISEED=22285.D0
WRITE(6,100)
100 FORMAT('’ QUANTILE ESTIMATION FROM RIGHT-CENSORED DATA BY
1 THE KERNEL METHOD ')
INPUT SAMPLE SIZE - INTEGER < 300
READ *,N
INPUT DATA PAIRS Z,DELTA (SEPARATED BY SPACES)
WRITE (6,148) N
148 FORMAT(’'0SAMPLE SIZE =', I15/’0CENSORED SAMPLE:’/’ ’,9X,’'X
1 DELTA')
DO 44 1=1,N
READ *,Z(I),IDEL(I)
44 WRITE (6,149) Z(I),IDEL(I)
149 FORMAT(' ’,F15.6,14)
XN=N
INPUT NUMBER OF PERCENTILES DESIRED - K
READ *,K
INPUT PERCENTILES DESIRED - (UP TO 10 VALUES OF P, 0<P<100)
READ *,(P(I),I=1,K)
HNS=.01
HNINC=.02
HNMAX= ,75
CRDER Z'S AND DELTAS
NM1=N~1
DC 15 1=1,NM1
IPl=I+1

DO 15 J=IP1,N
IF(Z(I).LE.Z(J)}) GO TO 15
TEMP=Z(I)

Z(1)=2(J)
Z(J)=TEMP
ITEM=IDEL(I)
IDEL(I)=IDEL(J)
IDEL!J)=ITEM

CONTINUE

DC 900 III=1,K
IFLAG=0
NBSMAX=300

PTP=P(II1),7100.D0

CMSESAV=1.D15

H=HNS




Table 1. Continued

1 DO 17 1=1,N
ZS(I)=Z(1)
17 IDS(I)=IDEL(I)
QBOOT=0.D0
QBSQ=0.D0
NBS=0
14=1
C CALCULATE PL ESTIMATE AND S(I)=JUMP SIZES
3 DO 20 1=1,nMl
PF(I)=1.D0
DO 20 J=1,1
IF(IDS(J).EQ.0) GO TO 20
XJ=J
PF(I)=PF(I)*(XN~XJ)/(XN-XJ+1.D0)
20 CONTINUE
PF(N)=0.D0
S(1)=1.D0-PF(1)
DO 21 I=2,N
IMl=I-1
21 S(I)=PF(IM1)-PF(I)
IF(NBS.GT.0) GO TO 45
C CALCULATE PL QUANTILE ESTIMATE
SJ=0.D0
DO 35 J=1,N
SJIP=SJ+S(J)
I£{5(J).EQ.0.DO) GO TO 35
IF((PTP.LE.SJP).AND. (PTP.GT.SJ)) GO TO 36
SJ=5JP
GO TO 35
-~ 36  QNHATP=2S(J)
a8 GO TO 45
X 35  CCNTINUE
- C CALCULATE KERNEL QUANTILE ESTIMATE
y 45 S3=0.D0
- QP=0,D0
} DO 59 J=1,N
. A= (SJ-PTP)/HN
{'- A=DMAX1(A,-1.D0)
[ SJ=SJ+S(J)
E XARG=(SJ-PTP) /HN
] B=DMIN1(XARG,1.D0)
L IF((A.GE.1.D0).OR.(B.LE.-1.D0)) GO TO 59
g IF(B.LE.0.DO) GO TO 51
IF(A.GE.0.D0) GO TO 52
QP=QP+Z5(J) * (B-A-(B*B+A*A) /2.D0)
GO TO 59
- 51  QP=QP+ZS(J)*(B-A+(B*B-A*A),/2.D0)
« GO TO 59
52  QP=QP+2S(J)*(B-A-(B*B-A*A),/2.D0)
59 CONTINUE
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Table 1. Continued

IF(NBS.GT.0) GO TO 60
QNP=QP
GO TO 61
60 QBOOT=QBOOT+QP
QBSQ=QBSQ+QP*QP
IF(IFLAG.EQ.0) GO TO 61
QNPP(14)=QP
I14=I4+1
61 NBS=NBS+1
IF(NBS.GT.NBSMAX) GO TO 800
C GENERATE N UNIFORM (0,1) RANDOM NUMBERS
C USING IMSL SUBROUTINE GGUBS
CALL GGUBS(ISEED,N,W)
C GENERATE BOOTSTRAP SAMPLE
DO 706 J=1,N
WJI=DBLE(W(J))
II=XN*WJ+1.D0
28(J)=2(11)
70 IDS({J)=IDEL(II)
C ORDER ZS'’S
NM1=N-1
DO 80 I=1,NM1
IPl=I+1
DO 80 J=IP1,N
IF(2ZS(I).EQ.ZS(J)) 2S8(J)=2S(J)+1.D~4
IF(ZS(I).LT.ZS(J)) GO TO 80
TEMP=ZS(I)
2S8(1)=zS(J)
25(J)=TEMP
ITEM=IDS(I)
IDS(1)=IDS(J)
IDS(J)=ITEM
80 CONTINUE
GO TO 3
800 XNS=NBS-1
QBIAS=QBOOT,/XNS—QONHATP
QMSE=(QBSQ-QBOOT**2/XNS ) /(XNS~1.D0 ) +QBIAS**2
IF(IFLAG.EQ.1) GO TO 860
IF(CQMSE.GE.QMSESAV) GO TO 850
QMSESAV=QMSE
HSAVE=HN
IF(IFLAG.EQ.1) GO TO 860
850 HN=HN+HNINC
IF(HEN.LT.HNMAX) GO TO 1
IFLAG=1
NBSMAX=1000
HN=HSAVE
GO TO 1
860 QVAR=CMSE-QBIAS**2
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Table 1.

Continued

WRITE(6,103)

103
1

FORMAT('0 P ON(P) BIAS EST. MSE EST.
BANDWIDTH USED')

WRITE(6,151) PTP,QNP,QBIAS,QMSE,QVAR,HN

151

FORMAT(’ ’,F4.2,4D13.5,F9.2)
SE=DSQRT(QVAR)

WRITE(6,152) SE

152

751

900

153
1

FORMAT( ' OESTIMATED STANDARD ERROR OF QN(P) =',D12.5)
DO 751 1=1,999

IP1=I+1

DO 751 J=1P1,1000

IF(QNPP(I).LE.QNPP(J)) GO TO 751

TEMP=QNPP(I)

ONPP(I)=QNPP(J)

ONPP(J )=TEMP

CONTINUE

WRITE(6,153) QNPP(25),QNPP(975)

FORMAT(' APPROXIMATE 95-PERCENTILE INTERVAL:’,D13.5,

' TO ’,D13.5)
STOP

END

VAR EST.
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Table 2. Example Input Data for Quantile Estimation Program

15 n = sample size
1.2837
.6636
.1827
1.9805
.1393
.2796
.6807
.4247
1.1301
.3699
1.9590
.1404
.1696
.1912
.4354
4 k = number of quantiles to estimate
5 10 25 k values 100p

r X;,8; pairs
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Table 3. Output for Data in Table 2

QUANTILE ESTIMATION FROM RIGHT-CENSORED DATA BY THE KERNEL METHOD
SAMPLE SIZE = 15

CENSORED SAMPLE:

X DELTA

.283700 O

.663600
.182700
.980500
.139300
.279600
.680700
.424700
.130100
.369900
.953000
.140400
.169600
.191200
.435400

COO0OOFRPROHROOOOHHOOKr
OCOO0OOCOHOH,FFOOOO

P QN(P) BIAS EST. MSE EST. VAR EST. BANDWIDTH USED
0.05 0.25144D+00 0.27371D-01 0.27924D-01 0.27174D-01 0.11

ESTIMATED STANDARD ERROR OF QN(P) = 0.16485D+00
APPROXIMATE 95-PERCENTILE INTERVAL: 0.23801D+00 TO 0.57944D+00

P QN(P) BIAS EST. MSE EST. VAR EST. BANDWIDTH USED
0.10 0.28883p+00 0.10934D+00 0.58516D-01 0.46560D-01 0.29

ESTIMATED STANDARD ERROR OF QN(P) = 0.21578D+00
APPROXIMATE 95-PERCENTILE INTERVAL: 0.22141D+00 TO 0.10683D+01

L

P ON(P) BIAS EST. MSE EST. VAR EST.  BANDWIDTH USED
0.25 0.77867D+00 0.37146D+00 0.20857D+00 0.70595D-01 0.73

g ESTIMATED STANDARD ERROR OF QN(P) = 0.26570D+00

u APPROXIMATE 95-PERCENTILE INTERVAL: 0.36779D+00 TO  0.13626D+01

[0 P QN(P) BIAS EST. MSE EST. VAR EST.  BANDWIDTH USED

- 0.50 0.14833D+01 -0.61632D+00 0.56409D+00 0.18424D+00 0.39

,

'.

ESTIMATED STANDARD ERRCR OF QN(P) = 0.42923D+00
APPROXIMATE 95-PERCENTILE INTERVAL: 0.56632D+00 TO 0.19792D+01




-".-7'-‘ -—vu

e AAr A afh-ane ARG i s s At SRe Acab e aCE A S ATINE Sl ek A un At Al S tai

A I e ™

e,

P.f....

13

Input Data for Mechanical Switch Failure Example

Table 4.
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Table 5. Output for Mechanical Switch Failure Data

QUANTILE ESTIMATION FROM RIGHT-CENSORED DATA BY THE KERNEL METHOD

SAMPLE SIZE = 40

CENSORED SAMPLE:

X DELTA

1.,151000 O
1.170000
1.248000
1.331000
1,381000
1.499000
1.508000
1.534000
1.577000
1.584000
1.667000
1.695000
1.710000
1.955000
1.965000
2.012000
2.051000
2.076000
2.109000
2.116000
2.119000
2.135000
2.197000
2.199000
2.227000
2.250000
2.254000
2.261000
2.349000
2.369000
2.547000
2.548000
2.738000
2.794000
2.883000
2.884000
2.910000
3.015000
3.017000
3.793000

OFRFPHFHROOHOKMKPEPHOOKFOFROMRMOOFEFOOOROREFFHFOOOOHODOOO

P QN(P) BIAS EST. MSE EST. VAR EST. BANDWIDTH USED
0.05 0.16482D+01 0.43077D-02 0.12651D-01 0.12632D-01 0.05

ESTIMATED STANDARD ERRCR OF QN(P) = 0.11239D+00
APPROXIMATE 95-PERCENTILE INTERVAL: 0.14995D+01 TO 0.19955D+01

P QN(P) BIAS EST. MSE EST. VAR EST. BANDWIDTH USED
0.25 0.21835D+01 -0.11022D-01 0.18869D-01 0.18747D-01 0.03

ESTIMATED STANDARD ERROR OF QN(P) = 0.13692D+00
APPROXIMATE 95-PERCENTILE INTERVAL: 0.18969D+01 TO 0.25470D+01

.....
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